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ABSTRACT
Increased attention is being paid to transit photometry as a viable method for discovering or conÐrm-

ing detections of extrasolar planets. Several ground-based e†orts are underway that target short-period,
giant planets such as 51 Peg b, and several missions have been proposed to NASA and ESA to detect
planets as small as Earth from spaceborne photometers. The success of these e†orts depends in part on
the ability to establish appropriate detection thresholds to control false alarm rates and the ability to
assess the statistical conÐdence in planetary candidates drawn from any such search. This latter function
attains higher importance for the space-based e†orts, where direct ground-based conÐrmation of
terrestrial-size planets is not possible. These tasks are complicated by the need to survey tens of thou-
sands of stars to overcome the limited geometric probability of transit alignment and by the nature of
the transit signals themselves. In this paper, we present empirical methods for setting appropriate detec-
tion thresholds and for establishing the conÐdence level in planetary candidates obtained from transit
photometry of even a large number of stars. The methods are simple and allow the observer to quickly
assess the statistical signiÐcance of any particular set of transits.
Subject headings : planetary systems È techniques : photometric

1. INTRODUCTION

With the astonishing discovery of about a dozen giant
short-period (\7 day) planets in the last 5 yr, astronomers
are turning to transit photometry to discover new planets
and to conÐrm radial velocity detections (Borucki et al.
2001 ; Brown & Charbonneau 2000). In transit photometry,
nearly continuous Ñux measurements of many individual
stars are used to search for signatures caused by the transit
of a planet crossing a stellar disk. The amplitude of the Ñux
reduction reveals the size ratio of the planet to the star,
whereas the time interval between transits is simply the
orbital period. From KeplerÏs third law and knowledge of
the stellar mass and size, the planetary size and semimajor
axis can be determined (Borucki & Summers 1984 ; Schnei-
der & Chevreton 1990). Recently, transit photometry con-
Ðrmed the planetary nature of HD 209458b Ðrst by
ground-based photometry (Charbonneau et al. 2000 ; Henry
et al. 2000) and subsequently by space-based photometry
(Castellano et al. 2000 ; Robichon & Arenou 2000). Transit
photometry searches are not new. The Transits of Extra-
solar Planets (TEP) Network (Deeg et al. 1998 ; Doyle et al.
2000 ; Jenkins, Doyle, & Deeg 2000) has been observing one
of the smallest known eclipsing binary system, CM Dra-
conis, for evidence of small transiting planets and large non-
transiting ones since 1994. At least four groups are
attempting to detect 51 PegasiÈtype planets from the
ground (see, e.g., Borucki et al. 2001 ; Brown & Charbon-
neau 2000 ; Henry et al. 2000 ; Howell et al. 2000), while
others are using spaceborne instruments including the
Hubble Space Telescope (Gilliland et al. 2000 ; Brown et al.
2001) and the Hipparcos data archive (Laughlin 2000). This
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paper focuses on the question of assessing the signiÐcance of
any purported transit detections given the unique character
of this detection technique as opposed to radial velocity and
astrometric searches.

The radial velocity and astrometric methods of Ðnding
planets seek to detect harmonic signatures of the gravita-
tional e†ect of a planet on its parent star. The former tech-
nique is sensitive to the changing projected velocity of the
star along the line of sight from Earth. The latter method
detects the presence of a planet from periodic changes in the
apparent position of the parent star relative to nearby refer-
ence stars as it orbits the planet-star system barycenter. The
signal detection problems for both of these techniques can
be cast into the frequency domain, where a periodogram is
formed and large positive spikes indicate the presence of a
possible planet. Although eccentricity precludes such
signals from being purely sinusoidal, the signatures always
consist of an impulse train in the frequency domain with
most of the energy at the fundamental frequency equal to
the inverse orbital period. Black & Scargle (1982) examine
the case for astrometry, while Cumming et al. (1999)
examine the detection strategy and characterize the null
statistics for an 11 yr long radial velocity survey. Once a
planet is detected, the orbital parameters are varied until
the predicted astrometry or radial velocities Ðt the obser-
vations in a least-squares sense.

The signature of a transiting planet in a single-star
system, however, is fundamentally di†erent from these two
cases in that the signal consists of equally spaced pulses of
duration much shorter than the orbital period. For
example, HD 209458b exhibits D1.6% deep transits lasting
about 3 hr spaced 3.52 days apart (Brown & Charbonneau
2000). The Fourier transform of such a pulse train consists
of an impulse train spaced at day~1 with anT
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envelope tracing out the Fourier transform of an individual
pulse, i.e., a function similar to a periodic sinc2 (u) function.
As a consequence of its concentration in time, the Fourier
transform (FT) of a transit pulse train is broadband in the
frequency domain. In addition, observation noise accom-
panies any data set and provides continuous noise power
and will thus dominate the power spectrum of the data,
masking the spectral features of the transits except for very
high signal-to-noise ratio (S/N) cases. Therefore it is difficult
to detect transits directly in the frequency domain as the
energy is not highly concentrated in a few periodogram
bins. Transits are most easily detected in the time domain or
in another domain that reÑects the time-conÐned nature of
the signal, such as an appropriate wavelet domain. The fact
that the signal is periodic coupled with the unavailability of
an efficient detection possibility in the frequency domain
complicates the detection of such signals, as the period
is not known a priori. (HD 209458b is an exception in that
the planet was Ðrst detected through its radial velocity
perturbations.)

For transit detection there are two basic parameters :
period and phase (epoch of Ðrst transit). Transit duration
and the detailed shapes of individual transit pulses are less
important, as discussed in Jenkins, Doyle, & Cullers (1996).
For a star with known mass and size, the maximum transit
duration is constrained by the orbital period and the size of
the parent star (Koch et al. 1998). The detection of planets
via transit photometry requires a thorough search through
this parameter space, by varying the period and phase (and
to some degree transit duration) and thresholding a detec-
tion statistic obtained at each trial point in the parameter
space. A detection statistic is simply a scalar obtained by a
calculation performed on the data to test for the presence of
a signal. Its value then can be interpreted in terms of its
statistical signiÐcance, i.e., how likely it is that noise Ñuctua-
tions alone caused the detection statistic to attain its
observed value.

An appropriate criterion for establishing a detection
threshold in this case is the Neyman-Pearson criterion :
maximize the detection rate while achieving the given
desired false alarm rate. For simple detection problems such
as detecting the presence of a signal in each of a consecutive
sequence of disjoint time intervals, all that is required is a
knowledge of the statistical distribution of the detection
statistics when no signal is present, the so-called null sta-
tistics. In our case, however, the detection statistics are not
independent ; there is a complex web of correlations among
the large number of target signals. Thus, we need to under-
stand the behavior of the maximum expected null statistic
for a single light curve over all the possible planets we
search for. There appears to be no closed-form description
for the desired distribution even under the simplest of
assumptions. This problem has been largely overlooked in
the literature to date.

Several papers have appeared recently regarding transit
photometry. Deeg, Favata, & the Eddington Science Team
(1998) estimate the performance of the proposed ESA
Eddington mission by conducting Monte Carlo simulations.
Transits were added to white Gaussian noise sequences rep-
resenting observational noise, and the ability of a matched
Ðlter algorithm to detect the transits was examined. The
detection threshold was determined by examining the
results of 105È107 trials without adding transits to the
observational noise. The actual value of the threshold,

however, is not given, and no further details are presented
on the search space explored for each trial. This approach is
similar to the methods presented here, but the focus was on
the expected performance of Eddington. Our intent is to
provide a general theoretical framework and an associated
empirical methodology that can be applied to any transit
photometry campaign. Two other papers, Gilliland et al.
(2000) and Brown et al. (2001), contain discussions of the
puzzling lack of planets in a survey of 35,000 main-sequence
stars in the globular cluster 47 Tucanae. A detection thresh-
old of 6.3 p was used based on the assumption that the
observation noise was white and Gaussian and that
D6 ] 105 actual tests were conducted per star. This is most
likely a conservative approach given that the set of tests
were highly correlated. A particularly compelling argument
is presented demonstrating that the sensitivity required to
detect 51 PegasiÈlike planets in 47 Tuc was achieved.

Under certain conditions, the detection threshold can be
determined according to a heuristic method developed by
K. Cullers (1995, private communication). The number of
e†ective independent tests for a well-sampled, contiguous
data set can be estimated in the following way : take the
number of independent phases for the longest orbital period
sought, square it, and multiply the result by the number of
stars to be surveyed. That is, the Ðrst transit must occur
sometime during the Ðrst section of data that is as long as
the longest period under consideration, and the last transit
must occur somewhere in the last section of data that is as
long as the longest orbital period under consideration. The
number of e†ective independent tests is equal to the number
of permutations of possible independent phases for the Ðrst
transit and those for the last transit. While this approach
can be proved to yield the correct answer, it is not clear how
to apply it to all cases of interest. In particular, if the time
series obtained are not well sampled or contiguous, or the
length of the data set is only as long as the longest period of
interest, the assumptions underlying this method do not
apply. Moreover, this method makes the following assump-
tions : (1) Consider each test as a set of indices specifying
which points are ““ in transit.ÏÏ The set obtained by taking
the ““ exclusive or ÏÏ operation of any two testsÏ ““ transit point
sets ÏÏ is at least as large as the number of points in a single
transit event. (2) For any given test there is always another
test where the Ðrst constraint is strictly met ; i.e., the non-
overlap between the two tests is exactly one transit dura-
tion. If the grid of the search space is more sparse or more
dense, this method might over- or underestimate the e†ec-
tive number of independent statistical tests conducted in the
search. In any event, a detailed understanding of the null
statistics for transit campaigns is crucial to the success of
both ongoing and proposed missions and projects.

In this paper, we show that the problem of setting the
required detection threshold can be broken into two parts :
(1) the establishment of the e†ective number of independent
statistical tests conducted in searching a single light curve
for planetary transits, and (2) the characterization ofNEIT,
the null statistics for a light curve with a candidate sequence
of transits. The latter determines the false alarm rate for a
single test for that particular star as a function of the detec-
tion threshold. The former quantity, together with the total
number of target stars in the program, dictates the requisite
single-test false alarm rate for a given desired number of
false alarms for the entire experiment. These two quantities
are the subject of this paper, in which we seek to present
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empirical methods for estimating them. Moreover, the
methods presented take the characteristics of the noise dis-
tribution and its temporal correlation structure directly into
account. The results, then, provide robust tools for evalu-
ating transit photometry campaigns and for establishing
conÐdence intervals on planetary candidates.

We describe one method for determining the equivalent
number of independent statistical tests conducted in search-
ing over a restricted region in parameter space for transits
in a photometric data set in ° 2. We present two di†erent
bootstrap methods for establishing the conÐdence in a plan-
etary candidate from a given light curve in ° 3 and in ° 4.
The Ðrst of these is appropriate for data sets like the Hip-
parcos archive, where sampling is incredibly sparse (89
points spread over 3 yearsÏ time in the case of HD 209458).
The second is tailored for data sets similar to those obtained
for the NASA Ames Vulcan Camera Project where 6È10 hr
of data at more than 4 hr~1 is collected every possible night
for up to 12 weeks each year.

The results of this paper show that transit photometry is
a promising method for detecting planets even in the pres-
ence of non-Gaussian, colored noise and with the required
large number of target stars ([100,000 stars in the case of
the Kepler mission ; Borucki et al. 1997) for the small geo-
metric probability of transit alignment.

2. THE EQUIVALENT NUMBER OF STATISTICAL TESTS

CONDUCTED IN SEARCHING A LIGHT CURVE FOR

PLANETARY TRANSITS

In this section we discuss the problem of determining the
equivalent number of statistical tests conducted in search-
ing a photometric data set for transiting planets. A similar
problem is encountered in detecting sinusoidal signals in
noise-corrupted time series. Horne & Baliunas (1986) pro-
posed a Monte Carlo technique for determining the e†ec-
tive number of independent frequency bins in the
Lomb-Scargle periodogram of a time series, an essential
step in determining an appropriate detection threshold and
for assessing the statistical signiÐcance of any peak in the
periodogram. Here we propose an analogous approach for
the transit detection problem. To open the discussion, we
review some basic detection theory relevant to the problem
and then illustrate various facets of the problem for non-
Gaussian noise. We provide an argument supporting the
validity of the results derived for white Gaussian noise to
more general cases of colored non-Gaussian noise. We
proceed with the case of white Gaussian observation noise,
giving a prescription for determining the e†ective number of
independent tests. This is followed by several examples
drawn from actual or anticipated observations.

If we wish to detect a deterministic signal in a noisy data
set where the noise is Gaussian (colored or white), the
optimal detector consists of a prewhitening Ðlter followed
by a matched Ðlter detector (see Kay 1998). For the transit
detection problem, a whitening Ðlter can be thought of in
terms of detrending the light curve to make it possible for a
simple matched Ðlter to detect a transit. Simple matched
Ðlters do not take into consideration points ““ out of transit.ÏÏ
Thus, if the transits are superposed upon a slowly varying
background with large excursions compared to the depth of
transit, and if no prewhitening is performed, the matched
Ðlter will have a difficult time distinguishing transits from
negative excursions occurring on longer timescales. The

details of implementing a whitening Ðlter depend a great
deal on the speciÐc observation characteristics : the contig-
uity of the data set, the uniformity of the sampling, etc. All
whitening Ðlters represent an attempt to use ““ out of
transit ÏÏ points to predict the Ñux ““ in transit ÏÏ ; i.e., whiten-
ing Ðlters presuppose a knowledge of the correlation struc-
ture of the observation noise. Here we will assume that the
noise is white or has been whitened. Now if the noise is not
Gaussian, this detector may not be optimal. However, well-
sampled photometric observations are often moderately
characterized as Gaussian once outliers caused by cosmic
rays and poor observing conditions are removed. In any
case, time domain matched Ðlters or their equivalent are the
dominant detection strategies employed in this area. Thus,
it is fruitful to consider this model given its popularity. We
will further assume that the data have been treated in such a
way that the transit pulse shapes are well preserved or that
the e†ects of the prewhitening Ðlter on the shape of the
ÏÏwhitened ÏÏ transit are known. The search for transits of a
given starÏs light curve, then, consists of convolving the light
curve with a sequence of model transit pulses (distorted in
the case of a prewhitener that does not preserve transit
shape) spaced by each trial orbital period. Equivalently, the
light curve may be convolved with a single model transit
pulse and then folded at each trial period. The resulting
detection statistics are examined for large positive values,
the location of which gives the orbital period and phase of
candidate planets. Equation (1) provides the formulation for
a simple matched Ðlter :

l \ b Æ s
pJsTs

\ 1
p b Æ sü , (1)

where b is the data vector, s is the signal to be found, and p
is the standard deviation of the zero-mean, white Gaussian
noise (WGN). Note that this is simply the length of the
projection of the data vector along the direction of the
signal vector. Under the null hypothesis (no transits), l is a
zero-mean, unit-variance Gaussian random variable. Like-
wise, it can be shown under the alternative hypothesis of s
being present that l is a unit-variance Gaussian random
variable with a mean equal to Here isJE
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called the energy of s. For transits consisting of rectangular
pulse trains, equation (1) collapses into the square root of
the number of points in transit times the mean data value
during transit divided by the standard deviation of the
observation noise.

In applying the detection algorithm, one will in practice
construct a rather large number of detection statistics in
order to densely sample the region of the parameter space of
interest. For example, suppose we have 6 weeks of data
from a ground-based program at a resolution of 4 hr~1 and
12 hr of observations each night and search for transiting
planets with periods between 2 and 7 days. The step size in
phase should be about of a transit duration, or 4514minutes. The step size in trial period should be set so that
the farthest transits from a Ðxed central one do not shift
more than about a transit duration from those for the12previous trial period. The outermost transit pulses shift
by the number of periods multiplied by the change in12period. The average step size in period for this case is
(3 hr/2)/(6 weeks/2/4.5 days) \ 19 minutes, giving D373
trial periods. The average number of tests at any period
is 4.5 days/(3 hr/4) \ 144 tests. Thus, there are roughly
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53,000 test statistics required per star to retain good sensi-
tivity to all possible period/phase combinations. For 5000
stars, then, there are D3 ] 108 test statistics constructed.
The tests for each star are not independent, however, as
every trial period will test for a transit at a given point in
time for some trial phase. Thus the set of detection statistics
for such a search is highly correlated and possesses a
complex web of correlations.

This is illustrated by the following example. Consider star
Cyg 1433 from the NASA Ames Vulcan Survey. Vulcan
1433 is a binary consisting of two late-F dwarfs undergoing
grazing eclipses (Caldwell, Borucki, & Lissauer 2000). This
star exhibits a transit-like feature with a depth of 3.19%, a
duration of 3.36 hr, and a photometric period of 1.957 days
(the orbital period is twice this value). The folded light curve
for this star is displayed in Figure 1a, with the phase nor-
malized such that the ““ transits ÏÏ occur at a normalized
phase of 0.25. By conducting a search for planets with orbits
between 1 and 7 days on a grid with 7.5 minute spacing, we
test 885,504 di†erent models against the light curve. Figure
1b shows the maximum detection statistic obtained for each
period sought for 2.5 hr transits. The maximum statistic
obtained is 27.7 p at a period of 1.96 days. Strong peaks are
observed at rational harmonics of the fundamental photo-
metric period, and the curve is elevated well above that of
the bottom curve in the Ðgure, which is the result for Cyg
1433Ïs light curve once the transits are removed from the
data. The multiple peaks in the top curve, which might be
confusing at Ðrst sight, actually provide conÐrmation that
the signal being picked up is caused by a periodic set of
pulses of comparable depth. For most of the searches dis-
cussed in the remainder of this paper, we set up a nonuni-
form grid with respect to orbital period based on the
following criterion : the correlation coefficient between a test
at a given phase and period and the highest correlated test
at the next largest period is no less than 0.75. This dictates
the step size in period for a given period and number of
transits observed and yields a maximum reduction in
apparent S/N of only 12.5%.

We deÐne the quantity as the maximum detectionlmaxstatistic over all tests of a light curve :

lmax \ max
i
Ml

i
N . (2)

The complementary cumulative distribution function
(CCDF), of interests us here.2F

lmax
(x) \ 1 [ F

lmax
(x), lmaxThe term is the false alarm rate of a single search asF

lmax
(x)

a function of the detection threshold, x. The question is,
how many independent tests, were e†ectively con-NEIT,
ducted in performing the search? By this we mean, how
many independent draws from an N(0,1)3 process are
required in order for the distribution of the maximum of the

draws to match the distribution of over someNEIT lmaxgiven range of the x-axis containing the desired false alarm
rate? We call this process and the corresponding dis-Nmaxtribution and density We doF

Nmax
(x ; NEIT) f

Nmax
(x ; NEIT).

not require that the two distributions match over the entire
x-axis, just over the portion of interest.

The domain of interest warrants further discussion. The
goal of this endeavor is to choose an appropriate threshold
for individual tests. Strictly speaking, if the observation
noise is WGN, the complementary distribution pro-F

lmax
(x)

vides this information directly ; the value, x, of for whichlmaxthe sample CCDF is the appropriateF
lmax

(x) \ NFA/Nstarssingle-test threshold, where is the total number of falseNFAalarms. We note that in searching light curves forNstarsplanets, we are performing independent searches. (IfNstars

2 Throughout this paper the term density refers to the probability
density function of a random variable. That is, given a random variable y
(denoted by boldface italic type), the density or probability density func-
tion (PDF) is the function deÐned as the probability that an instance of y is
conÐned to an inÐnitesimal interval about x : f

y
(x) \ lim*x?0 MP(x ¹ y ¹ x

] *x)/*xN. The term distribution refers to the cumulative probability dis-
tribution function (CDF), where The term comple-F

y
(x), F

y
(x) \ P(y ¹ x).

mentary cumulative distribution function (CCDF) refers to F
y
\

1 [ F
y
(x).

3 An N(k, p) distribution is deÐned as normal (i.e., Gaussian) with mean
k and variance p2.

FIG. 1.È(a) Folded light curve for star Cygnus 1433 from the Vulcan campaign and (b) maximum detection statistics for a search for planets with orbits
between 1 and 7 days for this star. The light curve is folded so that the transit-like feature occurs at a normalized phase of 0.25. The maximum detection
statistic obtained for 2.5 hr transits is plotted for each period for the original light curve (top curve) and for the light curve obtained by removing the transits
from the light curve (bottom curve). Note the sharp peaks appearing at multiples of the fundamental period of 1.96 days. The top curve is elevated above the
bottom curve because there is some phase for each period sought corresponding to a model light curve with transits overlapping at least one of the features in
the original light curve.
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the searches are not independent, then something has gone
wrong with the processing of the photometric data, as the
resulting light curves should not be correlated, and hence,
under the assumption that the observation noise is normal,
the searches must be independent.) If we restrict the single-
search false alarm rate to be the total expectedNFA/Nstars,false alarms is constrained to be equal to the desired NFA.
This reasoning can be extended to individual tests as well. If
the distribution of can be approximated by the dis-F

lmaxtribution in the region near then itF
Nmax

(x ; NEIT) NFA/Nstars,is sufficient to choose the single-test false alarm rate to be
using the actual single-test statistics. ThusNFA/Nstars/NEITthe region of interest is centered on F

lmax
\ NFA/Nstars.Now, to derive the distribution we recallF

Nmax
(x ; NEIT),

that the joint density of independent Gaussian vari-NEITables isX \ Mx
i
N
i/1, . . . ,NEIT

f (x1, x2, . . . , x
NEIT

) \ <
i/1

NEIT
g(x

i
) , (3)

where

g(x) \ 1

J2n
exp

A[ 1
2

x2B (4)

is the PDF of an N(0, 1) process (Papoulis 1984). The
density of can be obtained by noting that the probabil-Nmaxity of the maximum of draws from an N(0, 1) processNEITattaining a value x is the probability of any one of the draws
being equal to x times the probability that the remaining
draws are less than or equal to x. As the draws are indepen-
dent, we can write the density of by inspection :Nmax

f
Nmax

(x ; NEIT) \ NEIT g(x)G(x)NEIT~1 , (5)

where

G(x) \ 1

J2n
P
~=

x
exp

A[ 1
2

y2Bdy (6)

is the CDF of an N(0, 1) process. The distribution of isNmaxsimply the distribution of an N(0, 1) process raised to the
power :NEIT

F
Nmax

(x) \ G(x)NEIT . (7)

Thus, if the CCDF at x \ g,F
lmax

(x) \ NFA/Nstars

NEIT B log
A

1 [ NFA
Nstars

BN
log G(g) . (8)

If the joint distribution of the tests were known, the dis-
tribution of could be found analytically or numerically,lmaxat least in principle. Given the correlation matrix C for the
tests, the joint characteristic function is '()) \ exp

but the joint density requires the inverse corre-([12)C)t),
lation matrix C~1 (Papoulis 1984). We note that the detec-
tion statistics are drawn from an space,Npoints-dimensional
where is the size of the data set. Hence, there can beNpointsno more than linearly independent tests performedNpointsover the data set. However, the parameter of theNEITprocess, may be much larger than the number ofNmax,observations, for a given sampling and planetaryNpoints,search, as will emerge from the examples considered later
on. This underscores the fact that statistical independence
of the tests conducted over a search space is separate from
the linear independence of the signals considered as vectors
in the underlying observation space. For the 6 week long

observations considered above, there are only D2000
observations, with D53,000 tests applied to these points.
Moreover, since there are more tests than points, C must be
singular, and thus there does not appear to be a closed-form
expression for the joint density of the tests. In any case,
given the large size of the correlation matrix, integrating the
joint density or joint characteristic function either analyti-
cally or numerically is impractical. Below we advocate the
study of the distribution of through Monte Carlolmaxexperiments.

Here we argue that the equivalent number of independent
tests conducted per star, is not determined by theNEIT,
distribution of the observation noise and is not strongly
inÑuenced by the presence of (red) colored noise. The
Appendix contains a proof that the distribution of the
observation noise does not a†ect the value of NEIT.
Although the algorithm we provide in this section to esti-
mate is not a†ected by the actual noise distribution,NEITthe single-test threshold must be established by considering
the actual distribution for the detection statistics, which is
the subject of ° 3 and ° 4. We Ðrst note, however, that even if
the observational noise is not Gaussian, we require that it
be of bounded variance and that the light curves have been
cleaned of strong, isolated outliers. Thus, the observation
noise density should be well conÐned, even if the tails are
longer than that for a Gaussian process with the same stan-
dard deviation. Second, we note that each detection statistic
is a linear combination of several samples of observation
noise. In most practical situations many samples ““ in
transit ÏÏ will be obtained simply by the Ðne sampling grid
applied to ensure good sensitivity to the edges of transit
events. For instance, the examples from the ground-based
program we draw on feature sampling at º4 hr~1, giving at
least eight points per transit for transits longer than 2 hr.
Furthermore, we require in general that several (at least
three) transits be observed. By the central limit theorem
(Papoulis 1984), the density of the detection statistics may
be well or moderately characterized as being Gaussian even
in the event that the observation noise on individual data
points is not. For example, let the observation noise w(n) be
white and drawn from the mixed Gaussian distribution with
density

f (x) \S5
8
C

g
AS5

2
x
B] 1

2
g
AS5

8
x
BD (9)

and with corresponding distribution

F(x) \ 1
2
C

G
AS5

2
x
B] G

AS5
8

x
BD

. (10)

In this case, w(n) is a zero-mean, unit-variance process but
is distinctly non-Gaussian. Now consider (1) single-transit
statistics, for 3 hr transits (12-point pulses) and (2) three-l1,
transit statistics, for three 3 hr transits (36 samples froml3,
the mixed distribution). Figure 2 shows the CCDFs for w(n),
for for and for an N(0, 1) process. Note that thel1, l3,
single-transit and three-transit statistics are well modeled as
being drawn from an N(0, 1) process even though w(n) is not
an N(0, 1) process.

For the case of red noise, if the correlation length of the
noise were comparable to the length of a transit, we would
expect to be less than for the case of white noise.NEITConsider a colored-noise process generated by passing a
WGN process through a low-pass Ðlter with impulse
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FIG. 2.ÈSample and theoretical CCDFs (false alarm rates) as a func-
tion of threshold, x, for N(0, 1) Gaussian noise (solid line) ; the mixed
Gaussian distribution in the example in the text (dashed line) ; detection
statistics for a single transit, in noise from the mixed distribution (dash-l1,
dotted line) ; and detection statistics for three transits, in noise from thel3,
mixed distribution (dotted line). The distributions from which and arel1 l3drawn are 12-point and 36-point averages of samples from the mixed
distribution, respectively. As more points in the mixed distribution are
combined, the resulting distribution becomes more similar to a Gaussian
one.

response h : For this example, assume h is a rec-w
c
\ w \ h.

tangular pulse of length 3 hr. In applying a simple matched
Ðlter for single 3 hr transits, we convolve the observed noise,

with the unit-energy signal,w
c
, sü : l

c
(t) \ kw

c
\ sü \

where is a scale factorkh \ w \ sü \ kh \ l(t), k \ 1/JE
s9 p hchosen to ensure that is an N(0, 1) process under thel

c
(t)

null hypothesis. The last term in the equality deÐning l
c
(t)

shows that it is the (scaled) moving average of the single-
event statistic l(t) for white noise. The correlation length of
l(t) is half that for Thus, as a time series, l(t) has twice asl

c
(t).

many independent samples as does Hence, we shouldl
c
(t).

anticipate that the expected maximum value for is lessl
c
(t)

than the expected maximum value for l(t) for the same
length observation. In fact, this should be true of any search
for multiple transits as well, since multitransit statistics are
linear combinations of single-transit statistics. This is borne
out by a numerical example in which a 4 week observation
is considered with a sampling rate of 4 hr~1 and a search for
3 hr transits with periods between 2 and 7 days is con-
ducted. Figure 3 shows the CCDFs for both the red- and
white-noise cases, demonstrating that the equivalent
number of independent tests in conducting a full search is
smaller for red colored noise than for white noise. That is
not to say that it is easier to detect transits in colored noise.
Although is smaller, the scale factor k in e†ect reducesNEITthe S/N of a single transit by the same factor, making it
more difficult to detect transits in colored noise with a
correlation length comparable to a transit than it is for
white noise.

As the assumption of white noise provides a conservative
estimate for in the case of red noise, let us considerNmaxWGN noise for the remainder of this section. Given the
number of stars, and the desired total number of falseNstars,alarms, we set the threshold so that the single-test falseNFA,
alarm rate is equal to Let us considerNFA/(NstarsNEIT).

FIG. 3.ÈSample CCDFs for search statistics for white and red Gauss-
ian observational noise. The false alarm rate for red noise (dashed line) falls
signiÐcantly faster than for white noise (solid line) as the threshold is
increased. Thus, there are e†ectively fewer independent statistical tests
conducted in searching the red-noise sequence for transits than there are in
searching the WGN sequence.

some limiting cases for the complementary distribution of
the maximum test statistic. Suppose there is a signal wesü
test for in data set b such that and p \ 1. It followsb \ Asü
that This will be the case,lmax \ A~1b Æ b \ A~1J£

i
b2

i
.

or nearly so, if we test for all possible signals or for a large
number of signals that are dense on the Npoints-dimensional
unit hypersphere underlying the observations. Consequent-
ly, the distribution of would approach a s-distributionlmaxwith degrees of freedom. This is the distribution forNpointsan incoherent matched Ðlter or ““ energy ÏÏ detector (Kay
1998) and explains its poor performance in comparison with
a true matched Ðlter. On the other hand, since the set of
detection statistics for most transit searches is a complete
set of vectors in the linear algebra sense, the distribution

is bounded below by The search forF
lmax

(x) F
Nmax

(x ; Npoints).planetary transit trains in most cases, however, is a rather
restricted class of possible signals compared to the set of all
possible signals. We should expect it to asymptotically
approach the distribution for for someF

NEIT
(x) NEIT [

While we do not supply a proof, we give severalNpoints.examples that demonstrate that does, indeed, provideNmaxa good model for the distribution of in the region oflmaxinterest.
The algorithm for determining is as follows :NEIT
1. For the distribution of observational time steps, con-

struct a synthetic data sequence composed of independent
identically distributed (i.i.d.) points drawn from a zero-
mean unit-variance WGN process.

2. Examine the maximum detection statistic obtained
from this synthetic data set by applying the simple matched
Ðlter algorithm of equation (1) : over thelmax \ max

i
Mx Æ sü

i
N

desired grid in the region of the period-phase duration
parameter space of interest.

3. Repeat steps 1 and 2 a large number of times, at least
several tens of the number of stars in the target sample.

4. Determine the number of i.i.d. draws from aNEITWGN process so that the complementary distribution of
matches the sample complementary distributionF

NEIT
(x)
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function of the set determined above at the point ofMlmaxNinterest (eq. [8]).NFA/Nstars

Note that it is not necessary to determine the value of
to exquisite precision as the CCDF of fallsNEIT Nmaxrapidly at the false alarm rates of interest to transit photo-

metry campaigns. Even relative uncertainties of 50% can be
tolerated in the estimate of The remainder of thisNEIT.
section is devoted to several examples drawn from actual or
anticipated observations.

2.1. NASA Ames Vulcan Camera Observations
We Ðrst consider the case of collecting data for a ground-

based system similar to the NASA Ames Vulcan Camera
where 12 hr of data are obtained per night at 4 hr~1 over
several weeks. Figure 4 shows the results of conducting the
Monte Carlo experiment above on 1, 3, and 6 week long
sets of data, searching for planets with periods between 2
and 7 days. Over 105 trials were conducted for each data
set. Taking and a sample of 5000 stars, isNFA \ 1 NEITapproximately 1900, 24,000, and 79,000, for 1, 3, and 6
weeks of data, respectively. Figure 5 shows how NEITevolves as a function of for each case. Although theF

lmaxsearch space is the same for all three data sets, the longer the
baseline, the greater the resolution in terms of discrimi-
nating between planets with similar periods, and hence, the
greater the number of e†ective independent statistical tests.
That is, for longer data sets the correlation coefficient
between one particular planetary signature and a second
one drops o† more rapidly as a function of period and
phase as the parameters of the latter are varied from those
of the former. Thus, the CCDFs, for the 1 and 3F

lmax
(x),

week long data sets ““ roll over ÏÏ at smaller values of x than
does the CCDF for the 6 week long data set. Not only are
the values of smaller for shorter data sets, the thresh-NEITold required for the same false alarm rate is smaller as well.
The sample CCDFs appear quite ““ ragged ÏÏ at small values

FIG. 4.ÈSample CCDFs for planetary searches through 1, 3, and 6
weeks of Vulcan Camera data (solid curves) along with the theoretical
curves for i.i.d. draws from a Gaussian process (dashed curves) that best
match the empirical curves near a single-search false alarm rate of 1 in
5000. The e†ective number of independent tests performed in searching
through data sets of these lengths, is approximately 1900, 24,000, andNEIT,
79,000, respectively.

FIG. 5.ÈEquivalent number of independent tests for data similar to
that collected by the Vulcan Camera as a function of the single-search false
alarm rate for observations lasting 1, 3, and 6 weeks.

of because there are only a few samples available toF(x)
estimate the behavior in the tail of the distribution. The
number of trials performed to estimate the distribution
must be high enough that a reliable estimate for can beNEITobtained at the relevant single-search false alarm rate.

2.2. Multiple-Season Observations
We next examine for two 12 week seasons of VulcanNEITdata and the Hipparcos data for HD 209458. The Hipparcos

data consist of 89 points over 3 yearsÏ time, which is much
sparser than the sampling for the Vulcan camera ([2000
points per season). Figure 6 illustrates the di†erence in the
behavior of for each data set. Over 106 trials wereF

lmaxperformed in each analysis. The Hipparcos data are so
sparse that in searching for planets with periods from 2 to 7
days, the sample complementary distribution isF

lmaxmatched over a much shorter interval by compared toF
NEITthe two seasons of Vulcan data (Fig. 6a). This is illustrated

in Figure 6b, where is plotted versus the false alarmNEITrate. At a single-search false alarm rate of 1/10,000, isNEIT110,000 for HD 209458 and is 790,000 for the Vulcan data.
The Hipparcos data are so sparse that the signal space
covered by the transit search is a signiÐcant fraction of the
total surface of the 89-dimensional hypersphere underlying
the signal vector space. Thus the CCDF rolls o† much
slower than that for until rather small false alarm ratesF

lmaxare reached.

2.3. T he Proposed Kepler Mission
The proposed Discovery-class Kepler mission would

observe more than 100,000 target stars in the Cygnus con-
stellation continuously for at least 4 yr at a sampling rate of
4 hr~1 (Borucki et al. 1997). The goal of the mission is to
determine the frequency and orbital characteristics of
planets as small as Earth transiting Sun-like stars. The
range of periods of greatest interest is from a few months to
2 yr, with a range of transit durations from D5 to 16 hr for
central transits of planets with periods over this orbital
range. The average transit duration is 8 hr over these
periods, assuming a uniform distribution of periods. (Note
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FIG. 6.ÈAnalysis of multiple-year data sets. Panel a displays the CCDFÏs for the HD 209458 data set and for two 12 week observations with the Vulcan
Camera spaced 1 yr apart. Although the Vulcan data consist of 4000 points, whereas the HD 209458 data consist of only 89 points, the e†ective number of
independent statistical tests conducted in searching two seasons of Vulcan data set is only 8 times more than that for the HD 209458 data set, for a false alarm
rate of 1 in 104. Panel a illustrates that the slope of the CCDF for the Hipparcos data set (dashed curve) is much di†erent than that for the Vulcan data (solid
curve). Panel b shows the evolution of with false alarm rate corresponding to the Vulcan data (solid curve) and the Hipparcos data (dashed curve).NEIT

that since the average chord length of a circle of unit diam-
eter is n/4, the average duration of a transit is n/4 times the
duration of a central transit, which is 13 hr long at a period
of 1 yr.) We applied the algorithm to examine theNEITstatistics of for this experiment and to estimatelmax NEIT.
Figure 7 shows the result for over 106 searches for 8 hr
transits for orbital periods between 90 days and 2 yr, yield-
ing for a single search. This agrees withNEIT D 1.7 ] 107
the estimate obtained using K. CullerÏs approach discussed
in ° 1 and is no surprise as the assumptions for his method
are met by this experiment. There is strong agreement
between the theoretical curve and the empirical distribution
of even for false alarm rates as high as 0.1. Thus, welmax,estimate that there are D1.7 ] 1012 independent statistical
tests required in performing the desired search over 100,000
stars. The corresponding requisite single-test threshold is

FIG. 7.ÈThe sample CCDF for a 4 yr Kepler mission searching for 8 hr
transits for planets with orbital periods between 90 days and 2 yr (solid
curve), along with the theoretical curve for the maximum of 17 million
draws from an N(0, 1) process (dashed curve).

7.1 p for no more than one expected false alarm for the
entire campaign. The close agreement between the theoreti-
cal and the empirical curves most likely stems from the fact
that the signals we are searching for are quite sparse on the
unit-hypersphere underlying the 14,000-dimensional signal
vector space for the simulations.

In the following sections we consider the problem of
establishing an appropriate single-test threshold given the
desired false alarm rate, the number of stars, and knowledge
of NEIT.

3. BOOTSTRAP I : I.I.D. POINTS

Here we describe a technique for establishing the likeli-
hood that a set of events was caused by chance where the
noise is assumed to consist of i.i.d. points drawn from an
unspeciÐed noise distribution. This test is most appropriate
when the photometric observations are well characterized
as being white or are so sparsely sampled as to render
detrending impractical. The photometry of HD 209458 in
the Hipparcos catalog is an excellent example of the latter.
The planet was detected initially by radial velocity varia-
tions, and ground-based photometry conÐrmed the planet-
ary nature of these variations by measuring a planetary
transit for the Ðrst time. Shortly thereafter, examination of
the Hipparcos catalog revealed the presence of three transit
signatures occurring at the correct times, leading to a much
more accurate determination of the orbital period
(Castellano et al. 2000). However, there were only 89 photo-
metric measurements available for this star in the Hipparcos
catalog over a 3 yr period. Further, the quality of the data
set was marginal, as indicated by a standard deviation of
greater than 1%. Figure 8 shows the Hipparcos data folded
at the planetary period. The points in transit are not terribly
conspicuous. Given that the transits should be about 0.6%È
2.6% deep, and the numerous outliers in the data set, one
might question the validity of the Hipparcos transits. Fortu-
nately, there is a simple method for addressing the question
of whether white i.i.d. noise generated the purported tran-
sits. Here is the simple bootstrap algorithm :
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FIG. 8.ÈFolded light curve for HD 209458 from the Hipparcos catalog.
The points in transit are denoted by the open circles.

1. Draw k points at random with replacement from the
data set, where k is the number of points in transit.

2. Form the detection statistic (eq. [1]) where the set MbN
is the set of random points drawn in step 1.

3. Repeat steps 1 and 2 a sufficiently large number of
times to address the question, at least several times the
inverse of the desired false alarm rate. The fraction of
times that the bootstrap statistics MlN equal or exceed the
observed detection statistic gives the conÐdence level for the
detection.

For HD 209458, the detection statistic of the Ðve transit
points is 3.63 p. (Here we normalize the detection statistics
by sample standard deviation of the data set, rather than by
the median absolute deviation as was done in Castellano et
al. 2000. This does not alter the results in any way.) Running
the bootstrap algorithm above yields approximately two
trials in 100,000 that equal or exceed the observed statistic.
Figure 9 shows the sample complementary distribution of
the synthetic detection statistics along with that for N(0, 1)
noise. Note that the bootstrap method takes the shape of
the transit events into account as well, although the results
are not signiÐcantly altered if the shape of the transit is
assumed to be a rectangular pulse. There is only one ques-
tion for this data set, namely, are there transits at locations
consistent with the later ground-based observations? The
Hipparcos data set answers this question in the affirmative
in no uncertain terms. One might consider, however, if there
was a good chance of detecting the planet in the Hipparcos
data in the absence of the a priori period and epoch. The
method detailed in ° 2 suggests that in searching for planets
with periods between 2 and 7 days in the Hipparcos photo-
metric catalog, one conducts D110,000 equivalent indepen-
dent statistical tests for a single-search false alarm rate of
1/10,000. If the photometry for HD 209458 is typical of the
quality of the photometric data in the Hipparcos catalog,
one would expect almost all of the stars in the catalog to
exhibit events with detection statistics as great as 3.63 p.
Another difficulty in searching such a sparsely sampled
archive is that the results are ambiguous : there may be
several combinations of phase and period that yield the

FIG. 9.ÈSingle-test statistics for the simple bootstrap algorithm
applied to the HD 209458 data set (solid curve). Note that the false alarm
rate is bounded above by the distribution for N(0, 1) noise (dashed curve).
The observed detection statistic of 3.63 p is denoted by the vertical solid
line segment.

same points in transit. Thus, the Hipparcos catalog does not
represent a likely place to detect planets in the absence of a
priori information. It may, however, provide fertile ground
for future ““ precoveries,ÏÏ as in the case of HD 209458, or
yield promising candidates for follow-up ground-based
observations if judicious criteria are used to select a sub-
catalog from the full data set (Laughlin 2000).

4. BOOTSTRAP II : NON-I.I.D. POINTS

The bootstrap described in ° 3 may not be the most
appropriate test for establishing the signiÐcance of a set of
candidate transits in a light curve. In most photometric
data sets, especially those collected with ground-based tele-
scopes, nature conspires to inject long-term variations into
the data. Short-term Ñuctuations arising from photon
counting statistics, cosmic-ray events, and atmospheric
scintillation are well known and can be characterized fairly
easily (Young et al. 1991 ; Dravins et al. 1998). The long-
term variations, while well known, are not so easily charac-
terized. The sources are transparency variations, seeing
conditions changing over time, moving cloud structures in
the Ðeld of view, changes in the performance of the instru-
ment, intrinsic stellar variability, etc. The e†ect of these
noise sources is to introduce correlations over timescales
comparable to or longer than the duration of a transit and
thereby invalidate the assumption of white noise. Such
variations pose a major challenge to detecting planets with
virtually all techniques, including photometry. In the
context of radial velocity, Cumming et al. (1999) estimate
that noise from intrinsic stellar variability is 2È3 times
greater than the instrumental precision they achieved.
Whereas the bootstrap in ° 3 answers the valid question of
how likely it is that the candidate transit series was caused
by i.i.d. noise from the distribution underlying the obser-
vations, the presence of red noise (noise with a power spec-
trum inversely proportional to frequency) may invalidate
the result. Luckily, the simple bootstrap can be modiÐed to
preserve long-term variations on timescales of interest to
transit detection to answer a more appropriate question.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Normalized Phase
Fr

ac
tio

na
l F

lu
x

 135

 422

 866

1433

2757

3433

6133

504 JENKINS, CALDWELL, & BORUCKI Vol. 564

How likely is it that noise with a correlation structure and
power similar to the observational noise would cause a
detection statistic as high as that obtained for the candidate
events?

In principle, this is not terribly di†erent from the former
bootstrap if we recall that searching for transits amounts to
binning the data with a bin size equal to that of the trial
transits where the centers of the bins move over small frac-
tions of a bin. If the noise decorrelates over the timescale of
a transit, then the two methods are equivalent for each
individual test. The segmented bootstrap, then, consists of
randomizing the occurrence of strings of data at least as
long as the transits under scrutiny. Here is the segmented
bootstrap algorithm :

1. Locate and remove (or Ðt and subtract) the candidate
transits.

2. Remove all data strings shorter than a single transit
(possibly all data collected on the nights of the candidate
transits).

3. Pick a time tag in the remaining data set at random
and collect the points within a transit duration of that12point. This represents the Ðrst trial transit.

4. Repeat step 3 until the number of trial transits equals
the number of candidates in the data set.

5. Form the detection statistic for the trial transits.
6. Repeat steps 3È5 a large number of times.
7. The signiÐcance of the candidate transits is equal to

the fraction of times the detection statistic of a set of boots-
trap ““ transits ÏÏ equaled or exceeded the candidatesÏ detec-
tion statistic.

We note that the algorithm can be accelerated tremen-
dously by determining which points are within a transit of12each time tag in advance and storing the sum of these points
and the number of points in each set. In the case that the
observational noise is not white and has not been whitened,
the algorithm should be modiÐed to include whatever
detrending technique is applied to the light curves in the
actual search. For comparison purposes with WGN, the
statistics should be shifted and scaled so that they have a
mean of zero and unit variance.

As an example of this technique we examine several light
curves obtained from the NASA Ames Vulcan photometric

FIG. 10.ÈFolded light curves vs. normalized phase for seven stars in
the Vulcan Cygnus Ðeld with transit-like features of 3% or less. The
detected transit-like features occur at a normalized phase of 0.25. The
scattered points are the measurements. The solid curves are the best-Ðt
Gaussian pulses to the raw data points.

search for extrasolar planets. The data were obtained on 59
separate nights spanning a period of 12 weeks. Figure 10
shows the observed light curves for seven stars in the
Cygnus star Ðeld exhibiting transit-like features with depths
of less than 3%. Note that Jovian-size planets transiting
stars of spectral types from A0 to M0 produce changes in
the relative Ñux from 0.2% for uninÑated planets orbiting
an A0 star to about 3% for an inÑated planet orbiting a K5
star (Borucki et al. 2001). Thus the light curves shown in
Figure 10 are readily mistaken with those for a transiting
planet.

TABLE 1

VULCAN-CYGNUS STAR DESIGNATIONS

Period Transit Depth max MlobsN max MlbootN
Vulcan Star Tycho-2a V b B[V b Spectral Type (days) (%) (p) (p) False Alarm Probability

Cyg 135 . . . . . . . 2664-211-1 9.37 0.26 A3c 5.68 2.12 10.17 5.97 1.4E[24
Cyg 422 . . . . . . . 3141-2675- 1 9.90 1.17 K0c 6.08 1.27 8.17 6.01 1.6E[16
Cyg 866 . . . . . . . 2667-847-1 9.67 0.44 F5 Vd 0.94 1.15 9.31 6.30 6.0E[21
Cyg 1433 . . . . . . 2663-607-1 10.46 0.55 F9 Ve 1.96 3.19 27.7 6.55 9.8E[169
Cyg 2757 . . . . . . 2677-367-1 11.36 0.74 . . . 7.36 2.61 8.08 6.69 3.2E[16
Cyg 3433 . . . . . . 3140-914-1 11.25 0.31 F0f 0.45 1.87 11.0 5.60 2.4E[28
Cyg 6133 . . . . . . 2664-1385-1 11.62 0.76 G0f 2.58 2.56 8.66 7.83 2.3E[18

et al. 2000.a HÔg
b Magnitudes and colors are from the Tycho catalog (ESA 1997), except for stars Cyg 2757 and Cyg 6133, the values for which are from the Tycho-2

catalog.
c Cannon & Pickering 1923.
d Cyg 866 is a triple system of late-F dwarfs with two of the stars eclipsing and the third orbiting with an upper-limit period of D340 yr (Posson-Brown et

al. 2000).
e Cyg 1433 is a binary consisting of two late-F dwarfs undergoing grazing eclipses (Caldwell, Borucki, & Lissauer 2000).
f D. Latham 2000, private communication.
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The star identiÐcations, colors, and spectral types, where
known, are given in Table 1. To determine if the masses of
the companions suggested by the transit-like features are
substellar, all of the stars except for Cyg 2757 are being
observed spectroscopically by D. Latham and his col-
leagues at the Smithsonian Astrophysical Observatory
(2000, private communication). Radial velocity results
help rule out a planetary mass companion in all of the stars
save one (Cyg 6133). Cyg 135 has a spectral type of A3
(Cannon & Pickering 1923) and is rapidly rotating, having
a projected rotational velocity v sin i [ 150 km s~1
(D. Latham 2000, private communication). A mid-A dwarf
has a radius of therefore the observed 2% transit2Rsun ;
depth indicates a companion radius of at least 4 Jupiter
radii. This size is not consistent with a planet-mass compan-
ion unless it is very young, D106 yr (Guillot 1999 ; Burrows
et al. 2000). Latham found that both Cyg 422 and Cyg 3433
are giants, which indicates that the observed brightness
changes could not be the result of a transit of a planet-size
companion. Stellar mass companions were observed spec-
troscopically around both Cyg 866, part of a triple system
with one pair eclipsing (Posson-Brown et al. 2000), and Cyg
1433, an eclipsing binary. Both eclipsing pairs have orbital
periods equal to twice the observed photometric period.
Preliminary spectroscopic observations of Cyg 6133 indi-
cate no radial velocity variation due to a stellar mass com-
panion. The spectra indicate that the star is an early G
slightly evolved o† of the main sequence, with log g D 4.0
(D. Latham 2000, private communication). Spectroscopic
observations of this star are continuing ; however, the
photometric data suggest that this is an eclipsing binary.
First, there is evidence for secondary eclipses in the light
curve shown in Figure 10 ; second, the duration of the
transit/eclipse is D5 hr, twice what is expected for a planet
orbiting a G dwarf. The last star, Cyg 2757, has not been
observed spectroscopically because the Ñux variations are
likely systematic noise, as no signal is seen at the expected
period and phase in a second season of Vulcan obser-
vations. This star is presented as an example of where sys-
tematic noise can mimic a transit signal.

We applied the segmented bootstrap algorithm for tran-
sits of 2.5 hr duration to these stars to obtain the conÐdence
level in the detections. Over 3.5 ] 109 trials were performed
for each star, and the resulting statistics were shifted and
scaled to obtain zero-mean, unit-variance distributions.
Table 1 contains the transit period, transit depth, maximum
observed detection statistic (shifted and scaled asmax MlobsNwere the null bootstrap statistics), the maximum bootstrap
statistic obtained for each star, and the prob-max MlbootNability of false alarm for the observed maximum statistic
assuming the observation noise is WGN. All of the detec-
tions have high conÐdence, as none of the bootstrap sta-
tistics came within 0.83 p of the observed statistic. Figure 11
shows the CCDFs for these seven stars along with that for
N(0, 1) noise. All but two of the curves cluster about that for
N(0, 1) noise. The curve for Cyg 2757 can be explained by
noting that its light curve contains many outliers and highly
correlated sequences of points that drop o† from the
average Ñux level at the edges of several nightsÏ obser-
vations. The curve for Cyg 6133 can be explained in one of
two ways : (1) If it is a grazing eclipsing binary, then the
photometric period is the same as the dynamic period of the
system and the secondary eclipses have not been removed
prior to the bootstrap analysis. (2) If it is a high mass ratio

FIG. 11.ÈBootstrap detection statistics for seven Vulcan target stars
from the Cygnus Ðeld identiÐed as possessing transit-like features (various
symbols) and the expectation for unit-variance, zero-mean WGN (solid
curve). All but two of the curves cluster about that for N(0, 1) noise.

system, then the photometric period is twice the dynamic
period of the system and half the eclipses were not been
discarded prior to generating the bootstrap statistics.

These two examples underscore the fact that the identiÐ-
cation of candidates via a detection algorithm is not the end
of the planetary detection process. Once identiÐed, all can-
didatesÏ light curves must then be Ðtted to analytic light
curves to determine the uncertainty in the period, phase,
and transit depth and to evaluate the likelihood that the
source of the high detection statistic is indeed, a planet. As is
the case for the Vulcan candidates, follow-up observations
can provide valuable ancillary information that either pro-
vides direct conÐrmation of a planet or excludes the possi-
bility of the source being a stellar mass object. Further
photometric observations are also useful, as additional data
allow for the identiÐcation of weak secondary eclipses and
provide strong discriminatory power in cases where system-
atic e†ects are suspected. The segmented bootstrap analysis
presented here also provides a method for identifying sys-
tematic errors, in that the empirical single-test CCDF
should behave similar to that for N(0, 1) WGN, otherwise
there are statistically signiÐcant events occurring on time-
scales comparable to the transits being sought and at times
not predicted by the most likely planetary candidate.

5. CONCLUSIONS

We have presented three Monte Carlo methods for esti-
mating parameters that are essential to assessing the per-
formance of photometric transit searches. The Ðrst method
determines the equivalent number of independent statistical
tests, performed in searching a single light curve forNEIT,
transiting planets over a given range in orbital period for
the desired total number of false alarms and the sample size,

In establishing the value for we used a MonteNstars. NEIT,
Carlo method which relied on random strings of N(0, 1)
noise. The value for derived by the proposed algorithmNEITdoes not depend on the actual noise distribution and is
conservative for red noise. If the noise distribution is Gauss-
ian, however, this procedure also yields the required single-
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test threshold. As the single-test statistics for the real data
sets examined here appear to be well modeled by the sta-
tistics for i.i.d. N(0, 1) noise, this threshold is valid in cases
even where the observation noise is not Gaussian. In the
case of well-characterized non-Gaussian observation noise,
the algorithm can be modiÐed to construct synthetic light
curves from the given distribution, rather than from an N(0,
1) distribution, yielding the appropriate threshold. This may
be difficult, however, as it is the distribution of the detection
statistics that is required, not the distribution of the obser-
vation noise (see the Appendix). In the examples drawn
from real observations presented here, this modiÐcation is
not necessary.

The value for can then be used in conjunction withNEITthe bootstrap methods of ° 3 or ° 4 to establish the appro-
priate single-test threshold for a photometric campaign.
The product of gives the total number of inde-NEITNstarspendent tests performed in searching the entire data set for
planets. If no further observations are possible, the value of
the threshold should be chosen to constrain the total
number of false alarms to be a small fraction of the total
number of detections. However, if further observations of
candidate stars are possible, then the threshold can be
lowered in order to increase the detection rate so long as the
follow-up observations can handle the increased obser-

vational load. These bootstrap methods estimate the recei-
ver operating curves (ROCs) for a matched Ðlter algorithm
that takes into account in the best way possible the statistics
underlying the noise of the observations. Which method is
more appropriate depends on the nature of the obser-
vational sampling, with the simple bootstrap preferred in
the case of highly sparse observations whereas the segment-
ed bootstrap is more appropriate for observations with
tightly clustered observations or evenly and densely
sampled observations. The derived ROCs along with

provide an objective approach for assessing theNEITNstarssigniÐcance of any candidate planet and for estimating the
detection rate of a proposed transit photometry campaign.

We are grateful to Dr. Laurance Doyle and Dr. Kent
Cullers of the SETI Institute and Dr. Hans Jorg-Deeg of the
Insituto de de for their careful read-Astrof•" sica Andoluc•"a
ings and constructive comments. We also thank Dr. Ron
Gilliland of the Space Telescope Science Institute for
reviewing the manuscript and for his help in improving the
quality of the Ðnal version. This work was partially sup-
ported by funding from Origins and Advanced Project
Offices at NASA Headquarters and the Astrobiology Office
at NASA Ames Research Center.

APPENDIX

PROOF THAT THE DISTRIBUTION OF OBSERVATION NOISE DOES NOT AFFECT THE
VALUE OF NEIT

Here we sketch a proof that the value for does not depend on the noise distribution assumed for the observations. AsNEITdiscussed in the text, the distribution of the individual detection statistics may well be Gaussian even if the observation noise
is not. For the purposes of the proof we will assume that the detection statistic, l, is a function of an N(0, 1) process, x.
Moreover, let us restrict l to be a zero-mean, unit-variance random variable. Let l \ h(x) establish the relationship between x
and l, and let h(x) be strictly monotonic increasing : i† This does not limit the variety of noiseh(x1) \ h(x2) x1 \ x2.
distributions that can be considered as a function h can always be found relating two given distributions (Papoulis 1984). An
example is the corresponding density of which possesses extremely long tails in comparison with an N(0, 1)h(x) \ x3/J15,
process. Indeed, even the sum of 100 independent samples has signiÐcant tails compared to an N(0, 1) process. Now, the
properties of h(x) imply that

F
l
(y) \ PMl ¹ yN \ PMx ¹ h~1(y)N \ F

x
(h~1(y)) . (A1)

Thus, there is a clear functional relationship between the distribution of x and the distribution of l. Additionally, this
functional relationship carries over to the maximum detection statistic over a given search, and the maximumlmax \ max

i
Ml

i
N,

of the corresponding Gaussian deviates, Hence, Let be thexmax \ max
i
Mx

i
N : lmax \ h(xmax). F

lmax
(y) \ F

xmax
(h~1(y)). NEITe†ective number of independent tests performed in searching for transiting planets for the Gaussian detection statistics MxN :

F
xmax

(x) \ NFA/Nstars B 1 [ F
x
(x)NEIT (A2)

near But x \ h~1(y) for some real number, y. Sox \ x0.

F
xmax

(x) \ F
xmax

(h~1(y)) \ F
lmax

(y) , (A3)

F
x
(x)NEIT \ F

x
(h~1(y))NEIT \ F

l
(y)NEIT . (A4)

Thus, near Therefore, the distribution of can be approximated by the distributionF
lmax

(y) B 1 [ F
l
(y)NEIT y \ h(x0) \ y0. lmaxobtained from the process of choosing the maximum of draws from the distribution of l in the region of interest, i.e., nearNEITwhich is the desired result.F

lmax
\ NFA/Nstars,
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